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Abstract

The self-organizing map neural network is used in a supervised way to represent a sensor–actuator
mapping. The learning of the controller assumes no prior information, but only reward/failure signals that
are produced by an evaluation criterion. The evaluation criterion used is based on the low-pass filtering of
the gradient of a reward function and the local storing of the filtered gradient value. The control method is
tested in vibration isolation of a flexible spray boom used in agriculture for pesticide application. The
neural network learns to stabilize the boom on-line without any prior information and with a very high
performance.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

Many mechanical structures are subjected to vibrations that can lead to damage or to fatigue
and thus shorten the operational lifetime of the structure. Passive vibration isolation gives poor
results because of low selectivity. Active vibration isolation is much more effective. However,
model-based techniques require continual excitation signals. In practice continual excitation is
rarely available during the operating condition of a system. An alternative is to develop an
algorithm that can discover the control actions by itself. The only source of information in this
case is a ‘‘reward function’’ which specifies at a given moment how well the controller has
performed. For this algorithm to be executed the system must now create at each learning step the
control action [1].

In the absence of any further information, a stochastic search can be performed in the space of
the available control values with the aim to maximize the reward received at each step.
Performance-based partitioning of the state space is achieved. Current sensor, actuator and target
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sensor values in a vectorized form become associated with next step control actions. Through the
maximization of a certain reward function, a goal-directed plant inversion is performed.

For continuous state spaces, the state-action look-up table refers to a quantization of the states
of the system through the use of an adaptive algorithm. Basically two types of learning are present
here:

(i) the adaptation of the partitioner, and
(ii) the reinforcement learning of the controller [2].

The determination of quantized states, which are internal states in the full control problem,
represents an instance of the hidden state problem [3]. For discrete actions, an ideal partition of
the continuous state space consists of domains with each having a unique optimal action for all
states belonging to that domain. In this way, an optimal partition is defined by the use of a policy
function that assigns states to actions. In the current paper the partitioning is performed by using
a self-organizing vector quantizer [1] combined with a reinforcement learning algorithm that
switches learning on and off based on the policy function. The distribution of the reference vectors
is usually determined by statistical properties of the inputs to the vector quantizer [4] and the
switching actions scheduling determined by the policy function.

In this paper, the learning rule for the vector quantizer is based on Kohonen’s self-organizing
feature map [5], which possesses interesting noise-filtering properties. The Self-Organizing Map
commonly referred to as SOM [6] is a neural network (NN) that converts complex, non-linear
statistical relationships between high-dimensional data into simple geometric relationships.

The determination of a quantized state cannot by itself represent input–output relationships. By
extending the SOM with output weights that store the output part of a mapping can provide the
original algorithm with the ability to approximate continuous relationships. Such a network has
been introduced earlier [1]. In the current paper for first time a partitioner based on SOM is
learned simultaneously with a reinforcement signal-based learning controller. A novel training
algorithm is presented for updating the parameters of this network. Then, this training algorithm
is successfully applied in the on-line stabilization of a flexible spray boom that is used in pesticide
application.

2. Reinforcement learning

In order to learn about various possible actions and the corresponding system performance, the
intelligent controller must autonomously generate the control signals. How this can be properly
done in order to obtain samples with high-utility needs to be addressed. The problem is related to
a proper experimental exploration of the system under consideration, but this is solved by an
‘‘intelligent explorer’’ who performs the measurements. By generating random control actions, the
operator begins by exploring the properties of the system and its response to the influences from
the environment. Among the various actions, those that correspond to increased performance are
then selected to reinforce the control, until an optimal operation in a particular situation is
obtained. While exploring the system to be controlled, an intelligent operator also remembers
which actions are most favourable in a particular situation, and later uses this information to
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predict the proper actions that are associatively based on the perception of the state of the system
and its environment [7]. A strategy similar to that described above is applicable to the design of
intelligent controllers, which are capable of reinforced learning. In order to obtain proper
information, the controller generates random actions and remembers them, together with the
corresponding system response as well as the utility. In the optimization, the performance of the
past is used to find an action that increases it at a particular time. For this purpose, the previously
memorized actions of the controller are varied slightly, and those actions that increase the
performance of the system are appropriately reinforced. In order to obtain a reinforcement of
the momentary, appropriate actions of the controller, the utility is permanently estimated, and the
corresponding information is further utilized to adjust the actions of the controller. The likelihood
of obtaining a global extremum of performance can he enhanced by gradually including
increasingly more steps into the estimation of appropriate actions. It is therefore reasonable to use
these corrected values in the self-organization process by which the prototypes are adapted to the
dynamic phenomenon taking place in the controlled system and the environment. This
corresponds to approximating the procedure of dynamic programming using neural networks
[8]. The corresponding changes are expected to drive the prototypes into the region of the state
space with a high average utility. The reinforcement procedure corresponds to a training process
of an intelligent controller. It is advantageous to use a variation of sample vectors to find a refined
set of learning vectors, by which the memory is then formed. It can be expected that with an
increasing number of tests the values of a performance-related reward function will increase
(or decrease in the case it is defined as a cost function). At the start of the training the memory is
thus mainly filled with prototype vectors, which are randomly distributed in the state space, while
later they become more concentrated in the region of maximal average utility. The estimation of
the optimal control is thus approximate and inaccurate at the start of the training, becoming
refined as the number of tests increases. The reinforcement learning resembles the properties of
the calculus of variations that is carried out in arithmetically finding the solution of optimal
control problems. The key control problem of reinforcement learning stems from the fact that the
gradient of the utility in the state space of control cannot be estimated very accurately from
empirical data obtained by only randomly generated samples. A continuing exploration of the
state space is also needed when at a certain instant the set of prototypes is indeed an optimal set
for a current situation, but later the properties of the environment change. The term optimal does
not necessarily mean that the number of prototypes is optimal but that the pre-selected number of
prototypes have stored optimal states and actions. For a corresponding change in the optimal
controller, the state space must be explored once again. It is characteristic of the proposed system
that the random exploration of the state space and the self-organization process can be
permanently active during the operation of the system. Such a compound process could be termed
‘‘reinforced self-organization’’. It is a basis of state-space exploration. Based on this, an
improvement in the intelligent controller can be achieved.

3. Controller and partitioner learning

The SOM [5] is an NN that maps signals (x) from a high-dimensional space to a one- or two-
dimensional discrete lattice of neuron units (s). Each neuron stores a weight (ws). The map

ARTICLE IN PRESS

D. Moshou, H. Ramon / Journal of Sound and Vibration 266 (2003) 601–612 603



preserves topological relationships between inputs in a way that neighbouring inputs in the input
space are mapped to neighbouring neurons in the map space. When extended with output weights
(ys) it can actually learn in a supervised way the mapping y=f(x). The input weights consist of
vectors of a combination of delayed values of measured system inputs and outputs. The output
space consists of the following step values of the control inputs that are associated through the
reinforcement learning procedure based on the maximization of a reward function. It is clear that
previous output values are included in the input but only next step output values are stored in the
output weights. This association of input and outputs is supervised since the association takes
place through the reinforcement learning procedure. This association is shown schematically in
Fig. 1.

The association of situation–action pairs is based on a reward/punishment scheme where a
reinforcement signal is produced that allows or not storage of a certain situation and action pair.
A two-state reinforcement signal (+1 or 0) is produced after an evaluation of the result that a
certain action has brought. A policy to update or not the SOM weights can be based on a reward
function by calculating the difference between two consecutive values of the reward function like
those presented in Eqs. (4) and (5). The continuous increase of the reward function can be used for
the production of a reinforcement signal that allows learning to take place. The creation of
prototypes by the self-organization process should be interpreted as a memorization process that
optimally preserves the information provided by the samples, while the generation of control
actions brings new information. This generation is appropriately guided by the reinforcement
process, which in turn leads to a search for new, favourable samples.
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Fig. 1. Association of input–output values by using a SOM. The input space consists of a vector of delayed values of

measured system inputs and outputs. The output space consists from the following step values of the control inputs that

are associated through the reinforcement learning procedure based on the maximization of a reward function.
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In a control situation when a system is driven by a certain control sequence

u ¼ ðuðk � 1Þ; uðk � 2Þ;y; uðk � mÞÞT ð1Þ

and the measured response of the system is

y ¼ ðyðkÞ; yðk � 1Þ;y; yðk � nÞÞT ð2Þ

and the desired next step output is denoted as yd (generally a vector, but in the example with the
boom it is assumed to be a scalar), the state vector that is used as input to the state quantizer
(SOM) is constructed as follows:

x ¼ ðyT
d ; y

T; uTÞT: ð3Þ

Subsequently, these state vectors are clustered by the SOM only if a continuous increase of the
difference of the reward function defined in Eq. (5) over a stored moving average (Eq. (6)) is
actually taking place. This can be achieved by simply comparing the values of the produced
difference and the stored difference. The control values u(k) are stored as an output weight
through the training procedure of Kohonen’s algorithm [5]. In the case of MIMO systems the data
can be concatenated in the same vector. The use of SOMs to cluster concatenated sequential data
has first been presented in Ref. [9]. A scalar reward function that determines the association of
states to actions can be defined as

RðkÞ ¼ �ðyðkÞ � yd Þ
TQðyðkÞ � ydÞ; ð4Þ

where with y(k) the vector of current (at t=k) output measurements is defined, and with yd the
vector of current target output values. The weighing matix Q is a positive definite matrix. The
weighing matrix is used to drive the clustering of the prototype vectors based on amplifying or
deminishing the effect of certain components of the clustered vectors. The exact form of this
weighing matrix depends on the importance and the constraints that have to be imposed on
certain components. In the current paper it has been assumed that all the components have the
same importance, therefore a unity matrix has been used. A policy can be based on this reward
function by calculating the difference between two consecutive values of the reward function:

DR ¼ RðkÞ � Rðk � 1Þ: ð5Þ

In Fig. 2 the evaluation is performed by the look-up table block and produces a firmness signal
that modifies the state quantizer. It is clear that every increase of DR is desirable, since the
maximum target value of the reward function (R) is zero. However, a maximization of R over a
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number of steps is better because temporary variations of the reward function can be due to
disturbances and not caused by the control sequence. For this reason every neuron stores a
moving average of the increase DR of the reward function R. This moving average is denoted
as /DRS:

In the presented method when a neuron is selected and a control action produces an increase
over the stored moving average for this specific neuron, a positive reinforcement signal is
produced. A positive reinforcement signal indicates that this neuron and its immediate neighbours
are allowed to learn the state–action pair that has led to the positive reinforcement signal. But
since only increases of the reward function that are greater than the stored moving average for
each neuron lead to learning, a continuous improvement of the partitioner and the look-up table
of control–action pairs is achieved. In the discrete time situation, the moving average of the
increases of the reward function can be obtained as

/DRSk ¼ /DRSk�1 þ gðDRk �/DRSk�1Þ; ð6Þ

where the subscript k denotes the time step t ¼ k and g is a small positive constant. Note that
the momentary value of the increase is denoted without brackets. After the update, the new
moving average is stored in the neuron that has been activated. The whole concept has to do
with supplying to each neuron a bias term to avoid overtraining. The learning algorithm for
the input and output weights is derived from the original Kohonen algorithm [6] based on the
competitive selection of the most proximal prototype vector which is called a winner. The
updating of the winner and its neighbours is presented in Eqs. (7) and (8) for the input and output
weights, respectively. However, the updating due to Eqs. (7) and (8) is performed only if the
difference of the reward function from Eq. (5) is larger than the locally stored moving average
from Eq. (6).

DwðinÞ
s ¼ ehðx� wðinÞ

s Þ; ð7Þ

DwðoutÞ
s ¼ e0h0ðu� wðoutÞ

s Þ; ð8Þ

where e; e0 and h, h0 are the learning rates and the neighbourhood kernels, respectively. With ws
(out)

the output weight ys is denoted. It must be noted that in the updating equations the winning
neuron is denoted with s, i.e. the one that has the smallest euclidean distance from the input x.
However the updating equations apply to the lattice neighbours of the winning neuron at every
updating step. The neighbourhood kernels used have the form of a Gaussian distribution like

h ¼ expð�jjx� wsjj
2=s2Þ; ð9Þ

where || � || denotes the Euclidean norm and s denotes the variance of the Gaussian distribution.
In either case, the applied control action that is applied, is constructed by two components

uðkÞ ¼ wðoutÞ
s � asðyðkÞ � ydÞ; ð10Þ

where as is a small positive value that should start from a relatively large value at the initial
training phase and subsequently reduced slowly to a final small value. This allows rapid
improvement at the initial period of training and allows a small margin for adaptation after the
partitioner and look-up table has been learned satisfactorily.

The value of control action u(k) from Eq. (10) is used for updating the output weight of
updating Eq. (8) only in case the reinforcement signal is positive. Such updating of the
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output weights ensures that the controller improves continuously. The updating equation for the
as factor is

Das ¼ e00h00ða � asÞ: ð11Þ

In Eq. (11), e00 and h00 are the learning rate and the neighbourhood kernel, respectively. By
setting e00 very small (in the example of the boom it is set equal to 0.005) the ‘‘exploration step’’
will converge to the final value denoted as (a) slowly enough to allow for satisfactory learning of
control actions. If the final value (a) is set different than zero some residual plasticity will allow for
continuous adaptation of the controller.

4. Flexible boom stabilization

Flexible spray booms are used in the agricultural domain for pesticide application. They usually
consist of lightweight beams on which spraying nozzles are mounted. When driving a tractor over
a field, the unevenness of the soil causes the flexible boom to vibrate, leading to under- and over-
application of pesticides, thus resulting in environmental pollution. Stabilization of flexible spray
booms is needed in order to achieve a uniform spraying liquid distribution and avoid
environmental damage.

The learning algorithm of Section 2 is applied to the on-line vibration isolation of a 12th order
linearized model of a flexible spray boom that has a total length of 12 m tip to tip. The test set-up
from which the model has been obtained is shown in Fig. 3. The spray boom has been modelled
using finite element modelling which after model reduction resulted in a state-space model.
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A detailed procedure has been presented in Ref. [10]. The linearized model is of the form

x ¼ Axþ Buþ Ew;

y ¼ CxþDuþ Fv: ð12Þ

The A matrix is the state (x) transition matrix, B is the input (u) distribution matrix, C is the
output matrix, D is the direct feed matrix of the input (u), E is the disturbance input (w)
distribution matrix and F is the sensor noise (v) distribution matrix.

For the simulations that are presented, only translational motion in the horizontal plane of the
flexible boom are considered, thus resulting in a SISO system. In Fig. 3 the horizontal acceleration
in translational motion is measured with the accelerometer. The suppression of horizontal flexible
deformations has not been tackled yet successfully, while, for the vertical vibrations a passive
suspension usually suffices.

The disturbances used are the accelerations resulting from a standardised field track [11] fed
through a model of the tractor wheels and a model of a tractor on which the spray boom has been
attached. The excitation signal runs for 23 s and is shown in Fig. 4. The tractor was supposed, in
the model, to run with a constant speed of 5 km/h.

The excitation signal of Fig. 4 is used as an input to the system. The uncontrolled response of
the system is shown in Fig. 5.

The sensor (accelerometer) and electro-hydraulic actuator are supposed to be collocated at
0.25 m from the connection joint of the flexible boom. The input of the network consists of vectors
of previous input and output values of the system determined through a sliding time window of a
certain length:

x ¼ ðyd ; yðkÞ;y; yðk � nÞ; uðk � 1Þ;y; uðk � mÞÞT; n ¼ 2; m ¼ 2: ð13Þ

Two delayed values have been used for the actuator (input) and the sensor (output) which are
both accelerations which means that n ¼ 2 and m ¼ 2: The SOM with 100 nodes was trained for
the whole period of the test signal (23 s).
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Fig. 4. The acceleration profile of the standardized track used as input to the flexible boom.
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The entire systematic procedure of Section 2 has been followed according to a certain series of
steps described below:

Step 1: Present an input to the SOM constructed from concatenated input, output data and the
target output value. The input is constructed based on Eq. (3). Here yd is scalar and it represents
the measured controlled acceleration. The distances of all prototype vectors from the presented
input are calculated. The most proximal prototype is selected as a winning node and becomes
activated.

Step 2: The activated neuron has stored an input weight denoted wðinÞ
s and an output weight

denoted wðoutÞ
s which have been initialized with random small values. The control action is

determined partly from the output weight and partly from the current output measurement (as is a
small positive step) based on Eq. (10).

Step 3: The reward (R) function for t=k is calculated based on the current output acceleration
measurement and also the increase of the reward function calculated based on Eq. (5).

RðkÞ ¼ �ðyðkÞ � ydÞ
2: ð14Þ

Step 4: Every neuron stores a moving average of the increases of the reward function calculated
based on Eq. (6).

Here a value of g equal to 0.2 has been used. Note that this value is stored in the neuron only
when it is activated.

Step 5: A positive reinforcement signal is produced only when

DRk > /DRSk�1: ð15Þ

Step 6: Given the positive reinforcement the input and output weights of the neuron and its
neighbours are updated according to the updating equations:

DwðinÞ
s ¼ ehðx� wðinÞ

s Þ; ð16Þ

DwðoutÞ
s ¼ e0h0ðu� wðoutÞ

s Þ: ð17Þ

ARTICLE IN PRESS

0 5 10 15 20
-12

-10

-8

-6

-4

-2

0

2

4

6

8

R
es

po
ns

e 
(m

/s
ec

²)

Time (sec)

Fig. 5. The response of the system when excited by a standardized track.

D. Moshou, H. Ramon / Journal of Sound and Vibration 266 (2003) 601–612 609



Here with u the control action at t ¼ k is denoted. If the condition that leads to positive
reinforcement does not hold, no updating occurs. Thus the SOM learns only from successful
sensor/actuator pairs. All the weights are initialized to small random values.

Step 7: The weighting parameter as is updated at all times as follows (initial value for as was set
equal to a value of 10�3 and final value equal to 10�4, while e00 was set equal to 0.005):

Das ¼ e00h00ða � asÞ: ð18Þ

Step 8: Go back to step 1 to present a new input.
The initial and final settings of the learning parameters, namely the learning rates e; and the

widths s of the gaussian kernels h for the updating equations were chosen to be eI ¼ e0I ¼ e00I ¼ 0:9
(initial), ef ¼ e0f ¼ e00f ¼ 0:05 (final), sI ¼ s0I ¼ s00I =0.6	 (number of units in one dimension of the
map) (initial), sf ¼ s0f ¼ s00f =0.3	 (number of units in one dimension of the map) (final). The
values of these parameters were chosen to decrease exponentially with time between the initial and
the final value.

The result of following the above on-line learning of control actions is shown in Fig. 6. Both are
accelerations at the point where the actuators are collocated with the sensors. From Fig. 7 it is
evident that the peaks have been reduced by at least 20 dB.

The evolution of the reinforcement signal through the first sampling steps (at a sampling rate of
1 kHz) is shown in Fig. 8. It is clear that during the first 0.2 s the controller learns most of the time,
thus resulting in a very small acceleration from the very beginning of the training session.

A way of visualizing the spatial structure of the representative vectors that the SOM has stored
is by plotting these vectors in the case that they are also two-dimensional like the SOM itself. In
the case of a higher dimension of the input data the geometrical relations of the representative
vectors are difficult to visualize.

As is evident from Fig. 9, in which the first two weights of the map are plotted, there is a very
clear ordering at the end of learning. These two weights are representative values of two
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consecutive controlled acceleration values that have emerged through the learning process of the
SOM. It has to be mentioned that during learning the SOM tends to represent the states that
occur more frequently. However, because of the bias that is introduced through the moving
average of the reward function increase in the updating policy (Step 5) the states that are visited
tend to be equiprobable.

An important aspect of the final stage of the SOM is that the states around the diagonal cover a
wider range. This follows from the cooling schedule of the updating equations (Step 6); i.e., the
learning rate assumes a very small final value.

5. Conclusions

A new neural network method for disturbance suppression of dynamical systems has been
presented. The main advantage of this method is the local representation of the controller and
state partitioner, which are learned simultaneously by reward and failure signals. The whole
learning scheme does not need any prior information but only output measurements of the
controlled system. Local updating algorithms assure much faster convergence than global
updating algorithms. The method is generally applicable from the point of view that it is not based
on a model of the system under control. It only relies on a reward function and the moving
average of locally stored rewards over time. It can be used equally well for on-line control of linear
and non-linear systems or systems with changing parameters. The new method presented can be
applied in the automotive (vehicle suspensions) and the aerospace domain (flexible space
structures), in the case of systems with uncertain or complex dynamic behaviour.
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